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LEITER TO THE EDITOR 

Fractal dimensionality of polymer chains 

S Havlin and D Ben-Avraham 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 5 January 1982 

Abstract. We suggest that the concept of fractal dimensionality provides a useful charac- 
terisation of the configurational properties of a single polymer. From numerical studies 
of long polymers traced out by self-avoiding walks on a planar lattice, we find that the 
fractal dimensionality is well defined and has a constant value for most scales of length 
of the chain. It is shown that renormalisation group theory provides a theoretical basis 
for the concept of fractal dimensionality in polymers. 

The statistical configurational properties of long polymer chains have been extensively 
studied both theoretically and experimentally (de Gennes 1979, Flory 1971). Exten- 
sive research has been done on quantities characterising a statistical ensemble of 
polymers (Domb 1969, McKenzie 1976, Wall et al 1963). However, no attempt has 
been made to characterise a single configurution of a single polymer. In the present 
work we treat the problem of describing the configurational shape of a single regular 
polymer. In particular, we seek a quantity which characterises a single configuration 
of a typical polymer in statistical equilibrium. Quantities such as the mean square 
end-to-end distance (R&,,) (No being the number of monomers) or the mean radius 
of gyration (Domb and Hioe 1969, Lax and Gillis 1977, McCrackin et a1 1973, Wall 
and Seitz 1979, Rapaport 1976) do not fulfil this requirement. For instance, one can 
think of a regular polymer chain for which bending about the middle does not change 
its general shape (i.e. it still is a regular polymer). However, such bending leads to a 
considerable change in (R:,,) and in its mean radius of gyration. In fact, it is known 
that even when No + 00, the relative fluctuation in (R:,,) is of the order of unity 
(McKenzie and Moore 1971, Fisher 1966). We propose that a more useful way of 
characterising a single polymer is by specifying its fractal dimensionality, FD 
(Mandelbrot 1977, Stanley 1977, Stapleton et ul 1980). 

We find that the FD describes a single configuration of a single polymer. The FD 
of such a polymer is nearly equal to the average value of the entire ensemble of 
polymers. 

In order to understand the concept of FD, consider a polymer traced out by a long 
self-avoiding walk. It can be viewed on different scales of length. The unit of length 
might range from a single step to the whole end-to-end length of the chain. In the 
lowest scale of length, we examine the walk from up close, so that we may distinguish 
different steps. As we move further away, we can no longer distinguish between 
individual steps; instead, small segments each containing several steps might appear 
as a single step and we thus see fewer details. In this way, we reach higher scales of 
length. 
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We now consider an infinite polymer chain. We choose a section of length a0 and 
count the number bo of details we see in that section for a given magnification. Suppose 
that upon changing the magnification by a factor a l / a o ,  we see bl details in the same 
section. Let 

(bl/bO) = (a1/aoID. (1) 

If D is independent of the magnification factor a J a o  for some range of scales, i.e. 
range of uo, the quantity D is called the fractal dimensionality of the polymer in this 
range. This definition is in accordance with the ideas developed by Mandelbrot (1977). 
The assumption that D is independent of a. expresses a self-similarity property of 
the polymer in different scales of length. We present evidence below for D’s indepen- 
dence of a. for a single polymer chain and thus propose that D is a useful parameter 
for characterising such polymers. 

An equivalent way of defining the FD is as follows. Instead of magnifying the 
polymer, we inspect a longer section of length al  (keeping the same scale) and we 
count as before the number of details in both sections. If the polymer fulfils the 
self-similarity assumption, (1) still applies with the same value of D as before. For 
both definitions D represents how much the polymer is winding. If the polymer is a 
straight line, then clearly, D = 1, whereas for ideal random chains, D can be easily 
shown to equal 2. 

It is useful to define the notion of a local fractal dimensionality (LFD) D(ao) 
according to the relation 

bl/bO = (al/ao)D‘“O’, (a1-ao)/ao<< 1. (2) 

D(ao) differs from D of (1) in that it can be defined for any value of uo. (The 
word ‘local’ in LFD refers to the local scale of length.) By contrast, the fractal 
dimensionality D is defined, and coincides with D(ao), only when D(ao) does not 
depend on a. for a finite range of values of ao. 

In the following we present numerical results for LFD and FD on polymers. We 
have studied self-avoiding walks on a two-dimensional square lattice generated by a 
Monte Carlo enrichment technique (Wall et al 1963). We produced 400 polymers 
of length No = 100, 200 polymers with No = 200, and 100 polymers with No = 400. 
We choose the pair of parameters s = 20, p = 11 satisfying the equation pe-As = 1 ( A  
is the usual attrition constant). 

The LFD was measured in the following way. The mean square separation of the 
end points of a segment containing N links in a polymer consisting of No links is 
defined by 

where (R:i+N)No is the mean square separation between the ith and the ( i+N)th  
elements of the chain. The quantity ( ( R ~ + 1 ) N o / ( R ~ ) N o ) 1 ’ 2  plays the role of a l / a o  in 
(2). Further, we expect that bo should be proportional to N and that b1 should be 
proportional to N + 1. Thus, from (2), we obtain for the value of the LFD 

The subscript No emphasises the fact that we are considering finite polymers. It should 
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be noted that if DNo(N) = D is a quantity independent of N, then (4) is equivalent to 

where A is a constant of proportionality. If such is the case, then ( 5 )  may be used 
as a definition of D. Note that ( 5 )  serves as a definition of D only if it holds for a 
wide range of N. Thus in defining D we make use of many internal distances 

In figure 1, we present a plot of DNo(N) as a function of N/No.  The graph shows 
two different typical regions which correspond to different kinds of ranges of scales. 
The first range is the main range for which LFD is nearly constant. The other range 
at N - No is the end-to-end range for which there is an abrupt increase in LFD. In 
fact, a third range is easily identified from the numerical data, the geomerrical range 
which occurs near N = 1. In this range, LFD is slightly different from that of the main 
range. 
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Flgwc 1. Plot of LFD DN,(N) averaged over sets of polymers as a function of N/No for 
different values of No. The dotted, full and broken curves represent N o =  100, 200 and 
400 respectively. 

We suggest that the origin of the different behaviour of DNo(N) in these three 
ranges is associated with edge effects. However, most of the scales of length of the 
polymers in the main range preserve in equilibrium a constant LFD. That is, they fulfil 
the self-similarity property suggested above. 

The FD is measured according to equation ( 5 )  by plotting In N as a function of 
ln((R&)No)1/2. The slope at each point on the resulting curve is the LFD and the part 
corresponding to the main range is a straight line. We calculate a best fit for this part 
and obtain D = 1.36rt0.04. The value for A is found to be A = 1.08*0.04. It is 
interesting to note that the value obtained for 1/D as an internal exponent of the 
chain matches that of the usually measured (Domb 1969) end-to-end exponent Y a 
result which is by no means obvious. Indeed, the usual end-to-point exponent, v, 
does not represent an internal self-similarity in contrast to FD. 

Fractal dimensionality of a single chain. One of the main results of the present 
work is the usefulness of characterising a single polymer by its LFD. The same plot 
as we have prepared for a set of polymers is repeated for a single polymer chain 
(figure 2). It suggests that even a single long chain has a well defined FD, in the sense 
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Figure 2. LFD of a single configuration of a polymer consisting of No = 400 monomers. 

that the value of FD measured for such a polymer is nearly equal to the average value 
of the set. Further evidence supporting this idea is presented in table 1 which shows 
that the deviation of FD from the average value of the set vanishes as No+ 00. Thus, 
in order to estimate D, it is enough to perform a measurement on a long single-polymer 
chain. 

Table 1. The FD fi isaveraged over the values of D in sets of polymers of length No. 
The fluctuation U = ( D 2 - f i * ) 1 ’ 2  vanishes as No become infinite. 

No B - AD 

100 1.40 0.16 
200 1.31 0.11 
400 1.355 0.077 

We now present the theoretical background for the FD. We base our treatment 
on the renormalisation group (RG) theory developed for polymers by de Gennes 
(1979), and we shall show that ( 5 )  follows from this theory. 

It is well known that for an ideal random walk chain 

( R % + I ) N ~ / ( R $ ) N ~ =  (N+ 1)/N ‘gN. (6) 
However, in self-avoiding chains, the excluded volume interaction swells the polymer. 
We describe this swelling by a factor (1 + h )  where h depends in general on gN and 
on a dimensionless coupling constant UN (see de Gennes 1979). That is 

( R $ + I ) N ~ = ( R % ) N ~ ~ N [ ~  +h(gN, UN)]. (7) 
The main idea of RG theory is to repeat this transformation many times, starting with 
N - 1 until N >> 1. It is assumed that for large enough N, the coupling constant uN 
reaches a finite limit U* which is called the ‘fixed point’: 

No >> N >> 1, U,, + U* = constant. (8) 
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When the fixed point is reached, h(gN, uN) no longer depends on uN. Thus, instead 
of (7) one writes 

(RL+*)N0 = (&NogN[l + h(grv)l, N >> 1. (9) 

From the semi-group property of the transformation, it follows that 

A general solution of (10) is 

h(gi) = gy-’  - 1, 

(RL+l)NoI(RL)No= [ ( N +  1)/NI2”, (12) 

(11)  

which, upon substituting in (9), yields 

from which ( 5 )  follows if v = 1/D. Thus, we see that RG ideas lead to the concept of 
FD. 

If should be noted that (12) holds only for N >> 1 (i.e. not in the geometrical range), 
a result which is consistent with our numerical data. Moreover, when N is of the 
order of No, another edge effect appears, that is, the effective coupling constant uN 
tends to change again because of the decrease in the excluded volume interaction. 
Equation (12) is thus correct only in the main range, because only then uN = U*. 

To summarise, we believe that the concept of fractal dimensionality provides a 
very useful description of the configurational properties of a single polymer. The LFD 
is a measure of how winding the polymer is for any scale of length (by contrast, the 
end-to-end distance is a property of the polymer for only one scale of length). In the 
range where the LFD is essentially constant, one can speak of FD of the polymer. 
Whenever the FD is defined it can be thought of as reflecting a self-similarity property 
of the polymer. 

The usefulness of the FD concept lies in the fact that FD characterises and can be 
measured on a single polymer. The FD behaves like a macroscopic quantity in the 
sense that its uncertainty vanishes as the size of the system (No) increases. By 
contrast, the end-to-end distance behaves like a microscopic quantity because relative 
fluctuations remain finite even when NO+ a. 

The authors wish to thank Professor C Domb, Professor M Luban, Professor B B 
Mandelbrot, Dr  M Lax and Mrs C Brender for stimulating discussions and I Dayan, J 
Hashkes and S Simhon for carrying out the computer programming. 
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